English.	Lhotá Nágá.	Jaipuriá Nágá.
Wax, n.	Niáso	
Wet, v.	Unchá	
When, $a d$.	Kothonga	
Where, ad.	Koiá	Mákoá
Which, pro.	Chokúto	Mápá
White, a.	Miá	Apo
Who? pron.	Chúá	Háná
Wide, a.	Choákk	
Widow, n.	Emi	Jánténgiú
Widower, n.	Khiangrán	Jántéva
Wife, n.	Ang	Jánngiú
Within, prep.	Táchúngi	
Woman, n.	Eloi	Déhiek
Wood, n.	Otóng	Pan
Wrist, n.	Khemhiék	
Yam, n.	Máni	Hakhúon
Year, n.	Enzúkhá	Ránpá
Yes, $a d$.	Hokhá	

On the S'uluasútras.-By Dr. G. Thibaut, Anglo-Sanskrit Professor, Banáras College.

It is well known that not only Indian life with all its social and political institutions has been at all times under the mighty sway of religion, but that we are also led back to religious belief and worship when we try to account for the origin of research in those departments of knowledge which the Indians have cultivated with such remarkable success. At first sight, few traces of this origin may be visible in the S'ástras of later times, but looking closer we may always discern the connecting thread. The want of some norm by which to fix the right time for the sacrifices, gave the first impulse to astronomical observations; urged by this want, the priests remained watching night after night the advance of the moon through the circle of the nakshatras and day after day the alternate progress of the sun towards the north and the south. The laws of phonetics were investigated, because the wrath of the gods followed the wrong pronunciation of a single letter of the sacrificial formulas; grammar and etymology had the task of securing the right understanding of the holy texts. The close connexion of philosophy and theology-so close that it is often impossible to decide
where the one ends and the other begins-is too well known to require any comment.

These facts have a double interest. They are in the first place valuable for the history of the human mind in general ; they are in the second place important for the mental history of India and for answering the question relative to the originality of Indian science. For whatever is closely connected with the ancient Indian religion must be considered as having sprung up among the Indians themselves, unless positive evidence of the strongest kind point to a contrary conclusion.

We have been long acquainted with the progress which the Indians made in later times in arithmetic, algebra, and geometry; but as the influence of Greek science is clearly traceable in the development of their astronomy, and as their treatises on algebra, \&c., form but parts of astronomical text books, it is possible that the Indians may have received from the Greeks also communications regarding the methods of calculation. I merely say possible, because no direct evidence of such influence has been brought forward as yet, and because the general impression we receive from a comparison of the methods employed by Greeks and Indians respectively seems rather to point to an entirely independent growth of this branch of Indian science. The whole question is still unsettled, and new researches are required before we can arrive at a final decision.

While therefore unable positively to assert that the treasure of mathematical knowledge contained in the Lilávatí, the Víjaganita, and similar treatises, has been accumulated by the Indians without the aid of foreign nations, we must search whether there are not any traces left pointing to a purely Indian origin of these sciences. And such traces we find in a class of writings, commonly called S^{\prime} ulvasútras, that means" sútras of the cord," which prove that the earliest geometrical and mathematical investigations among the Indians arose from certain requirements of their sacrifices. "S'ulvasútras" is the name given to those portions or supplements of the Kalpasútras, which treat of the measurement and construction of the different vedis, or altars, the word "s'ulva" referring to the cords which were employed for those measurements. (I may remark at once that the sútras themselves do not make use of the term "s'ulva"; a cord is regularly called by them "rajju".) It appears that a s'ulva-adhyáya or, pras'na or, instead of that, a s'ulvaparis'ishṭa belonged to all Kalpasútras. Among the treatises belonging to this class which are known to me, the two most important are the S'ulvasútras of Baudháyana and of A'pastamba. The former, entitled to the first place by a clearer and more extensive treatment of the topics in question, very likely forms a part of Baudháyana's Kalpasútra; the want of complete manuscripts of this latter work prevents me from being positive on this point. The same remark applies to the S'ulvasútra of A'pastamba.

Two smaller treatises, a Mánava S'ulvasútra and a Maitráyaníya S’ulvasútra, bear the stamp of a later time, compared with the works of Baudháyana and A'pastamba. The literature of the white Yajur Veda possesses a S'ulvaparis'ishṭa, ascribed to Kátyáyana, and there is no sufficient reason for doubting that it was really composed by the author of the Kalpasítra.

The first to direct attention to the importance of the S'ulvasútras was Mr. A. C. Burnell, who in his "Catalogue of a Collection of Sanscrit Manuscripts," p. 29, remarks that "we must look to the S'ulva portions of the Kalpasítras for the earliest beginnings of geometry among the Bráhmans."

I have begun the publication of Baudháyana's S'ulvasútra, with the commentary by Dvárakanáthayajvan and a translation, in the May number of the "Panḍit, a monthly Journal of the Benares College, etc.", and intend as soon as I have finished Baudháyana, to publish all other ancient S'ulva works of which I shall be able to procure sufficiently correct manuscripts. In the following pages I shall extract and fully explain the most important sútras, always combining the rules given in the three most important s'ulva treatises, those of Baudháyana, A'pastamba, and Kátyáyana, and so try to exhibit in some systematic order the knowledge embodied in these ancient sacrificial tracts.

The sútras begin with general rules for measuring ; the greater part of these rules, in which the chief interest of this class of writings is concentrated, will be given further on. In the next place they teach how to fix the right places for the sacred fires, and how to measure out the vedis of the different sacrifices, the saumikí vedi, the paitrikí vedi ,and so on.

The remainder of the sútras contains the detailed description of the construction of the "agni", the large altar built of bricks, which was required at the great soma sacrifices.

This altar could be constructed in different shapes, the earliest enumeration of which we find in the Taittiríya Saṃhitá, V. 4. 11.

Following this enumeration Baudháyana and A'pastamba furnish us with full particulars about the shape of all these different chitis and the bricks which had to be employed for their construction. The most ancient and primitive form is the chaturasras'yenachit, so called because it rudely imitates the form of a falcon, and because the bricks out of which it is composed are all of a square shape. It had to be employed whenever there was no special reason for preferring another shape of the agni; and all rules given by bráhmanas and sútras for the agnichayana refer to it in first line. A full description of the construction of this agni according to the ritual of the white Yajur Veda and of all accompanying ceremonies has been given by Professor A. Weber in the 13th volume of the "Indische Studien." A nearer approach to the real shape of a falcon or-as the
sútras have it-of the shadow of a falcon about to take wing is marle in the s'yena vakrapaksha vyastapuchchha, the falcon with curved wings and outspread tail.* The kañkachit, the agni constructed in the form of a heron, or according to Burnell (Catalogue, p. 29) of a carrion kite, is but a slight variation of the s'yenachiti; it is distinguished from it by the addition of the two feet. The alajachit again is very little different from the kañkachit, showing only a slight variation in the outline of the wings. What particular bird was denoted by the word alaja, the commentators are unable to inform us; in the commentary to Taittir. Saṃh. V. 5. 20 it is explained as "bhása", which does not advance us very much, as the meaning of bhása itself is doubtful. Next comes the praügachit, the construction imitating the form of the praüga, the forepart of the poles of a chariot, an equilateral acutangular triangle and the ubhayatah-praügachit made out of two such triangles joined with their bases. Then follows the rathachakrachit, the altar constructed in the form of a wheel; in the first place the simple rathachakrachit, a massive wheel without spokes, and secondly, the more elaborate sárarathachakrachit, representing a wheel with sixteen spokes. The dronachit represents a drona, a particular kind of tub or vessel; it could be constructed in two shapes, either square or circular (chaturasradronachit and parimandaladronachit). The paricháyyachit, which is mentioned in the next place, is in its circular outline equal to the rathachakrachit, but it differs from it in the arrangement of the bricks, which are to be placed in six concentric circles. The samúhyachit has likewise a circular shape; its characteristic feature was that loose earth was employed for its construction instead of the bricks. Of the s'mas'ánachit a full description together with the necessary diagrams will be given further on. The last chiti mentioned is the kúrmachit, the altar representing a tortoise ; the tortoise may be either vakránga, of an angular shape, or parimandala, circular.

Every one of these altars had to be constructed out of five layers of bricks, which reached together to the height of the knee; for some cases ten or fifteen layers and a correspondingly increased height of the altar were prescribed. Every layer in its turn was to consist of two hundred bricks, so that the whole agni contained a thousand; the first, third, and fifth layers were divided into two hundred parts in exactly the same manner; a different division was adopted for the second and the fourth, so that one brick was never lying upon another brick of the same size and form.

Regarding the reasons which may have induced the ancient Indians to devise all these strange shapes, the Saṃhitás and Bráhmaṇas give us

[^0]but little information. Thus we read for instance in the Taittiríya Saņhitá :

S'yenachitaṃ chinvíta suvargakámah, s'yeno vai vayasáṃ patishṭhah, s'yena eva bhútvá suvargaṃ lokaṃ patati.
"He who desires heaven, may construct the falcon-shaped altar; for the falcon is the best flyer among the birds ; thus he (the sacrificer) having become a falcon himself flies up to the heavenly world."

In the same place the dronachiti is brought into connexion with the acquiring of food; the praüga and rathachakra are described as thunderbolts which the sacrificer hurls on his enemies, and so on. Here as in many other cases we may doubt if the symbolical meaning which the authors of the bráhmanas find in the sacrificial requisites and ceremonies is the right one ; still we cannot propose anything more satisfactory.

But the chief interest of the matter does not lie in the superstitious fancies in which the wish of varying the shape of the altars may have originated, but in the geometrical operations without which these variations could not be accomplished. The old yajnikas had fixed for the most primitive chiti, the chaturasras'yenachit, an area of seven and a half square purushas, that means seven and a half squares, the side of which was equal to a purusha, i. e., the height of a man with uplifted arms. This rule was valid at least for the case of the agni being constructed for the first time ; on each subsequent occasion the area had to be increased by one square purusha.

Looking at the sketch of the chaturas'ra s'yena we easily understand why just $7 \frac{1}{2}$ square purushas were set down for the agni. Four of them combined into a large square form the átman, or body of the bird, three are required for the two wings and the tail, and lastly, in order that the image might be a closer approach to the real shape of a bird, wings and tail were lengthened, the former by one fifth of a purusha each, the latter by one tenth. The usual expression used in the sútras to denote the agni of this area is "agnih saptavidhah sáratniprádes'ah, the sevenfold agui with aratni and prádes'a," the aratni being the fifth ($=2 \pm$ añgulis), and the prádes'a, the tenth of a purusha ($=12$ añgulis).

Now when for the attainment of some special purpose, one of the variations enumerated above was adopted instead of the primitive shape of the agni, the rules regulating the size of the altar did not cease to be valid, but the area of every chiti whatever its shape might be-falcon with curved wings, wheel, praüga, tortoise, etc.-had to be equal to $7 \frac{1}{2}$ square purushas. On the other hand, when at the second construction of the altar one square purusha had to be added to the seven and a half constituting the first chiti, and when for the third construction two square purushas more were required the shape of the whole, the relative proportions of the single
parts had to remain unchanged. A look at the outlines of the different chitis is sufficient to show that all this could not be accomplished without a certain amount of geometrical knowledge. Squares had to be found which would be equal to two or more given squares, or equal to the difference of two given squares; oblongs had to be turned into squares and squares into oblongs; triangles had to be constructed equal to given squares or oblongs, and so on. The last task and not the least was that of finding a circle, the area of which might equal as closely as possible that of a given square.

Nor were all these problems suggested only by the substitution of the more complicated forms of the agni for the primitive chaturasras'yena, although this operation doubtless called for the greatest exertion of ingenuity ; the solution of some of them was required for the simplest sacrificial constructions. Whenever a figure with right angles, square or oblong, had to be drawn on the ground, care had to be taken that the sides really stood at right angles on each other; for would the áhavaníya fire have carried up the offerings of the sacrificer to the gods if its hearth had not the shape of a perfect square? There was an ancient precept that the vedi at the sautrámani sacrifice was to be the third part of the vedi at the soma sacrifices, and the vedi at the pitriyajna its ninth part; consequently a method had to be found out by which it was possible to get the exact third and ninth part of a given figure. And when, according to the opinion of some theologians, the gárhapatya had to be constructed in a square shape, according to the opinion of others as a circle, the difference of the opinions referred only to the shape, not to the size, and consequently there arose the want of a rule for turning a square into a circle.

The results of the endeavours of the priests to accomplish tasks of this nature are contained in the paribháshá sútras of the S'ulvasútras. The most important among these is, to use our terms, that referring to the hypotenuse of the rectangular triangle. The geometrical proposition, the discovery of which the Greeks ascribed to Pythagoras, was known to the old ácháryas, in its essence at least. They express it, it is true, in words very different from those familiar to us; but we must remember that they were interested in geometrical truths only as far as they were of practical use, and that they accordingly gave to them the most practical expression. What they wanted was, in the first place, a rule enabling them to draw a square of double the size of another square, and in the second place a rule teaching how to draw a square equal to any two given squares, and according to that want they worded their knowledge. The result is, that we have two propositions instead of one, and that these propositions speak of squares and oblongs instead of the rectangular triiugle.

These propositions are as follows :
Baudháyana:
समचतुरसस्या च्एयारन्नुर्दिसावतीं भूमिं करोति।
The cord which is stretched across-in the diagonal of-a square produces an area of double the size.

That is: the square of the diagonal of a square is twice as large as that square.

Ápastamba :
चतुरसस्याच्त्य यारज्नुर्द्विस्सावतीं भूकिं करोति।
Kátyáyana:
समचतुरसस्यान्त्ययारज्जुई्दिकरणी।
The cord in the diagonal of a square is the cord (the line) producing the double (area).
"Samachaturasra" is the term employed throughout in the S'ulvasútras to denote a square, the "sama" referring to the equal length of the four sides and the chaturasra implying that the four angles are right angles. The more accurate terminology of later Indian geometry distinguishes two classes of samachaturas'ras, or samachaturbhujas, viz. the samakarṇa samachaturbhuja and the vishamakarona samachaturbhuja; the S'ulvasútras, having to do only with the former one, make no such distinction. Akshṇayárajju is the ancient term, representing the later " karnarajju" or simply " karna." "Area" is here denoted by "bhúmi," While in later times "kshetra" expressed this idea, and "bhúmi" became one of the words for the base of a triangle or any other plane figure.

The side of a square is said to produce that square (karoti), a way of speaking apparently founded on the observation that the square is found by multiplying the number which expresses the measure of the side by itself; if the side was five feet long, the square was found to consist of 5×5 little squares, \&c. The expression was not applicable to other plane figures, to an oblong for instance; for there the area is the product of two sides of different length, neither of which can be said to produce the figure by itself.

The side of a square, or originally the cord forming the side of a square, is therefore called the "karani" of the square. That "rajju" is to be supplied to "karaní", is explicitly stated by Kátyáyana:

करणी नत्करएी तिर्ट्यं्मानो पार्श्यमान्यन्चएयेति रन्जवः।

By the expressions: karaṇí, karaní of that (of any square) \&c., we mean cords.

The side of a square being called its karaní, the side of a square of double the size was the "dvikarani"", the line producing the double (I shall for convenience sake often employ the terms "side" or "line"
instead of "cord") ; this was therefore the name for the diagonal of a square. Other compounds with karani will occur further on; the change of meaning which the word has undergone in later times will be considered at the end of this paper.

The authors of the sútras do not give us any hint as to the way in which they found their proposition regarding the diagonal of a square; but we may suppose that they, too, were observant of the fact that the square on the diagonal is divided by its own diagonals into four triangles, one of which is equal to half the first square. This is at the same time an immediately convincing proof of the Pythagorean proposition as far as squares or equilateral rectangular triangles are concerned.

The second proposition is the following :
Baudháyana:
टीर्घचतुरस्याच्त्पघारज्नुः पार्घ्वसानी निर्यङ्मानी च घत्पृथग्मूते कुरत स टुभघं करोति ।

The cord stretched in the diagonal of an oblong produces both (areas) which the cords forming the longer and the shorter side of an oblong produce separately.

That is: the square of the diagonal of an oblong is equal to the square of both its sides.

A'pastamba:

Kátyáyana gives the rule in the same words as Baudháyana.
The remark made about the term samachaturasra applies also to "dírghachaturasra" "the long quadrangle" meaning the long quadrangle with four right angles. "Párs'vamání (rajju)" is the cord measuring the pars'va or the long side of the oblong or simply this side itself ; tiryañmání, the cord measuring the horizontal extent or the breadth of the oblong, in other words its shorter side, which stands at right angles to the longer side. Noteworthy is the expression "prithagbhúte;" for as one of the commentators observes it is meant as a caution against taking the square of the sum of the two sides instead of the sum of their squares (prithaggrahanaṃ samsargo má bhúd ity evamartham).

It is apparent that these two propositions about the diagonal of a square and an oblong, when taken together, express the same thing that is enunciated in the proposition of Pythagoras.

But how did the sútrakáras satisfy themselves of the general truth of their second proposition regarding the diagonal of rectangular oblongs?

Here there was no such simple diagram as that which demonstrates the truth of the proposition regarding the diagonal of a square, and other means of proof had to be devised.

Baudháyana:

This (viz. that the diagonal of an oblong produces by itself, \&c.,) is seen in those oblongs the sides of which are three and four, twelve and five, fifteen and eight, seven and twenty-four, twelve and thirty-five, fifteen and thirty-six (literally, the sides of which consist of three parts and four parts, \&c.)

This sútra contains the enumeration of, as we should say, five Pythagorean triangles, i. e., rectangular triangles, the three sides of which can be expressed in integral numbers. (Baudháyana enumerates six; but the last is essentially the same with the second, 15 and 36 being 3×5 and 3×12.) Baudháyana does not give the numbers expressing the length of the diagonals of his oblongs or the hypotenuses of the rectangular triangles, and I subjoin therefore some rules from A'pastamba, which supply this want, while they show at the same time the practical use, to which the knowledge embodied in Baudháyana's sútra could be turned.

The vedi or altar employed in the soma sacrifices was to have the dimensions specified in the following:

पुरस्सात्चिर स्थीति सैमिक्या वे देर्विज्ञायते।

The western side is thirty padas or prakramas long, the práchí or east line (i. e., the line drawn from the middle of the western side to the middle of the eastern side of the vedi) is thirty-six padas or prakramas long; the eastern side twenty-four ; this is the tradition for the vedi at the soma sacrifices.

Now follow the rules for the measurement of the area of this vedi:
षट्चिण्रिकायामेडप्टाद शेपसमस्याप ग्समादन्नाट्र द्वाद शुनु ल च्चएं पच्चद शनु ल च्चां प्रष्टान्तयोरन्ता नियम्य पच्चदिशिन दचिएापायम्य शक्षुं निहन्येवमुत्तरतसे स्राएी
 रज्चा विचरणम्।

Add to the length of thirty-six (i.e., to a cord of the length of thirtysix either padas or prakramas) eighteen (the whole length of the cord is then 54), and make two marks on the cord, one at twelve, the other at fifteen, beginning from the western end; tie the ends of the cord to the ends of the prishṭhyá line (the prishṭhyá is the same as the práchí, the line directed exactly towards the east and west points, and going through the centre of the vedi. The fixing of the práchí was the first thing to be done when any altar had to be measured out. The methods devised for this end will not be discussed here, as they are based on astronomical observations; for our purpose it is sufficient to know that a line of 36 padas length
and ranning from the east towards the west had been drawn on the ground. On both ends of this line a pole was fixed and the ends of the cord of 54 padas length tied to these poles) and taking it by the sign at fifteen, draw it towards the south; (at the place reached by the mark, after the cord has been well stretched) fix a pole. Do the same on the northern side (i.e., draw the cord towards the north as you have drawn it just now towards the south). By this process the two s'ronís, the southwest corner and the southeast corner of the vedi are fixed. After that exchange (the ends of the cord ; i.e., tie that end which had been fastened at the pole on the east end of the práchí to the pole on its west end and vice versá), and fix the two amsas ("shoulders" of the vedi, $i . e$. , the southeast corner and the northeast corner). This is done by stretching the cord towards the south having taken it by the mark at fifteen and by fixing a pole on the spot reached by the mark at twelve; and by repeating the same operation on the northern side. The result are the two amsas. This is the measurement of the vedi by means of one cord (the measurements described further on require two cords each). (See diagram 1.)

The whole process described in the preceding is founded on the knowledge that a triangle, the three sides of which are equal to $15,36,39$, is rectangular.

The end aimed at was to draw the east and the west side of the vedi at right angles on the práchí. Accordingly, the práchí a b being 36 feet long, a cord a c b $(=54)$ was divided by a mark into two parts a $\mathrm{c}=39$ and $\mathrm{bc}=15$ and fastened at a and b . If then this cord was taken at c , and stretched towards the right, the angle a b c could not but be a right angle. The same applies to the angles a b d, b a e, and baf. In fixing the two east corners, both marks on the cord had to be employed, the mark at fifteen being used for constructing the right angle, the mark at 12 giving to the east side of the vedi the prescribed length (24 padas).

चिकचतुष्कयेगः पच्चिकाच्द्एयारज्जुः।

The diagonal cord of an oblong, the side cords of which are three and four, is five.

नाभिस्तिरम्यस्ताभिरण्थ सेग ।

With these cords increased three times (by itself ; i. e., multiplied by four) the two eastern corners of the vedi are fixed.

The proceeding is as follows: (See diagram 2.)
At c, at a distance of 16 padas from a, the east end of the práchí, a pole is fixed and then a cord of 32 feet length tied to the pcles at a and c. The cord is marked at a distance of 12 padas from a, and then taken by the marls and drawn towards the south until it reaches the position a ec. Thus

ro FIGURE 1.
$\mathrm{eb}, \mathrm{afb}=$ the cord of 54 padas length;
$\mathrm{c}=$ đakshmá sroní, d uttará sroní,

FIGURE 13.

chit before squares have been turned

Pus 3

Pig 10

EXPLANATION TO FIGUREI.

Bb práchf $=35$ pains ; $\mathrm{BCl}, \mathrm{adb}$, aeb, afb wo the card of 51 padas length;
 b inkeshras ama, if uttara arasa

EXPLANATION TO FIGURE 13.
The agmkshetra of the aárarathachakrachit before squares have been turnod ato curles.
abcd, the nave of the wheel; efgh-abcd, the aren comprising the spokes and the spaces between the epokes; $1 \mathrm{klm} \rightarrow \rho \mathrm{gh}$, the felloe of the wheel.

Fig. 22

Fig: 15
SÁRARATHACHAKRACHIT
(second layer)

Fig: 14
SÁRARATHACHAKRACHIT
(first layer)

a triangle is formed, the sides of which are $12,16,20$ and this triangle is a rectangular one; a e stands at right angles on a c , and as it is just 12 padas long, e marks the place of the southeast corner of the vedi. The north east corner d is found in the same way.

चतुर्यस्ताभि: शेगली।

With the same cords increased four times (i, e, their length multiplied by five) the two western corners of the vedi are found.

In this case a cord of 40 padas length is tied to the poles at c and b, and marked at the distance of 15 palas from b. Then it is taken by the mark and drawn towards the south into the position bg e. The result is a rectangular triangle as above; g marks the place of the southwest corner. The same operation repeated on the north side gives f as the place of the morthwest corner of the vedi.

Another method for the measurement of the vedi follows :

The diagonal cord of an oblong, the sides of which are twelve and five, is thirteen; with these cords the two east corners are fixed.
(See diagram III.)
A pole is fixed at the distance of five padas from the east end of the práchí, a cord of twenty-five padas length fastened at a and c, marked at the distance of 12 padas from a, drawn towards the south \&c., as above.

दिरभ्यस्ताभिः श्रेणी।

With these cords increased twice (multiplied by three) the two western corners are fixed.

The requisite rectangular triangle is here formed by the whole práchí $=36$, and by a cord of 54 , divided by a mark into two pieces of 15 and 39 .

Another method follows:

The diagonal cord of an oblong, the sides of which are fifteen and eight, is seventeen; with these cords the two western corners are fixed.
(See diagram 4.)
A pole b is fixed at the distance of eight padas from d , a cord of 32 padas tied to b and d , \& .

The diagonal cord of an oblong, the sides of which are twelve and thirty-five is thirty-seven; with these cords the two eastern corners are fixed.

A pole is fixed at c , thirty-five padas to the west from a ; a cord of forty-nine parlas tied to a and c, \&c.

एतार्वन्ति विज्ञ गानि वेदिविद्रा पानि भःन्ति।

So many " cognizable" measurements of the vedi exist.
That means : these are the measurements of the vedi effected by oblongs, of which the sides and the diagonal can be known, i.e., can be expressed in integral numbers.

In this manner A'pastamba turns the Pythagorean triangles known to him to practical use (the fourth of those which Baudháyana enumerates is not mentioned, very likely because it was not quite convenient for the measurement of the vedi), but after all Baudháyana's way of mentioning these triangles as proving his proposition about the diagonal of an oblong is more judicious. It was no practical want which could have given the impulse to such a research-for right angles could be drawn as soon as one of the " vijneya" oblongs (for instance that of $3,4,5$) was known-but the want of some proof which might establish a firm conviction of the truth of the proposition.

The way in which the Sútrakaras found the cases enumerated above, must of course be imagined as a very primitive one. Nothing in the sútras would justify the assumption that they were expert in long calculations. Most likely they discovered that the square on the diagonal of an oblong, the sides of which were equal to three and four, could be divided into twenty-five small squares, sixteen of which composed the square on the longer side of the oblong, and nine of which formed the area of the square on the shorter side. Or, if we suppose a more convenient mode of trying, they might have found that twenty-five pebbles or seeds, which could be arranged in one square, could likewise be arranged in two squares of sixteen and of nine. Going on in that way they would form larger squares, always trying if the pebbles forming one of these squares could not as well be arranged in two smaller squares. So they would form a square of 36 , of 49 , of 64 , \&c. Arriving at the square formed by $13 \times 13=169$ pebbles, they would find that 169 pebbles could be formed in two squares, one of 144 the other of 25 . Further on 625 pebbles could again be arranged in two squares of 576 and 49 , and so on. The whole thing required only time and patience, and after all the number of cases which they found is only a small one.

Having found that, in certain cases at least, it was possible to express the sides and the diagonal of an oblong in numbers, the Sútrakáras naturally asked themselves if it would not be possible to do the same thing for a square. As the side and the diagonal of a square are in reality incommensurable quantities we can of course only expect an approximative value; but their approximation is a remarkably close one.

Baudháyana:

Increase the measure by its third part and this third by its own fourth less the thirty-fourth part of that fourth; (the name of this increased measure) is savis'esha.

A'pastamba gives the rule in the same words.
Kityáyana:

The sútras themselves are of an enigmatical shortness, and do not state at all what they mean by this increasing of the measure; but the commentaries leave no doubt about the real meaning ; the measure is the karani, the side of a square and the increased measure the diagonal, the dvikaraní. If we take 1 for the measure, and increase it as directed, we get the following expression : $1+\frac{1}{3}+\frac{1}{3 \times 4}-\frac{1}{3 \times 4 \times 34}$ and this turned into a decimal fraction gives: $1 \cdot 4142156 \ldots \ldots$. Now the side of a square being put equal to 1 , the diagonal is equal to $\sqrt{2=1} 1414213$.. Comparing this with the value of the savis'esha we cannot fail to be struck by the accuracy of the latter.

The question arises: how did Baudháyana or Ápastamba or whoever may have the merit of the first investigation, find this value? Certainly they were not able to extract the square root of 2 to six places of decimals; if they had been able to do so, they would have arrived at a still greater degree of accuracy. I suppose that they arrived at their result by the following method which accounts for the exact degree of accuracy they reached.

Endeavouring to discover a square the side and diagonal of which might be expressed in integral numbers they began by assuming two as the measure of a square's side. Squaring two and doubling the result they got the square of the diagonal, in this case $=$ eight. Then they tried to arrange eight, let us say again, eight pebbles, in a square ; as we should say, they tried to extract the square root of eight. Being unsuccessful in this attempt, they tried the next number, taking three for the side of a square; but eighteen yielded a square root no more than eight had done. They proceeded in consequence to four, five, \&c. Undoubtedly they arrived soon at the conclusion that they would never find exactly what they wanted, and had to be contented with an approximation. The object was now to single out a case in which the number expressing the square of the diagonal approached as closely as possible to a real square number. I subjoin a list, in which the numbers in the first column express the side of the squares which they suksequently tried, those in the second column the square of the diagonal, those in the third the nearest square number.

1.	2.	1.	11.	242.	256.
2.	8.	9.	12.	288.	289.
3.	18.	16.	13.	338.	324.
4.	32.	36.	14.	392.	400.
5.	50.	49.	15.	450.	441.
6.	72.	64.	16.	512.	529.
7.	98.	100.	17.	578.	576.
8.	128.	121.	18.	648.	625.
9.	162.	169.	19.	722.	729.
10.	200.	196.	20.	800.	784.

How far the Sútrakáras went in their experiments we are of course unable to say; the list up to twenty suffices for our purposes. Three cases occur in which the number expressing the square of the diagonal of a square differs only by one from a square-number ; 8-9; 50-49; 288 - 289 ; the last case being the most favourable, as it involves the largest numbers. The diagonal of a square, the side of which was equal to twelve, was very little shorter than seventeen ($\sqrt{289}=17$). Would it then not be possible to reduce 17 in such a way as to render the square of the reduced number equal or almost equal to 288 ?

Suppose they drew a square the side of which was 17 padas long, and divided it into $17 \times 17=289$ small squares. If the side of the square could now be shortened by so much, that its area would contain not 289 , but only 288 such small squares, then the measure of the side would be the exact measure of the diagonal of the square, the side of which is equal to $12\left(12^{2}+12^{2}=288\right)$. When the side of the square is shortened a little, the consequence is that fromtwo sides of the square a stripe is cut off ; therefore a piece of that length had to be cut off from the side that the area of the two stripes would be equal to one of the 289 small squares. Now, as the square is composed of 17×17 squares, one of the two stripes cuts off a part of 17 small squares and the other likewise of 17 , both together of 34 and since these 34 cut-off pieces are to be equal to one of the squares, the length of the piece to be cut off from the side is fixed thereby : it must be the thirty-fourth part of the side of one of the 289 small squares.

The thirty-fourth part of thirty-four small squares being cut off, one whole small square would be cut off and the area of the large square reduced exactly to 288 small squares; if it were not for one unavoidable circumstance. The two stripes which are cut off from two sides of the square, let us say the east side and the south side, intersect or overlap each other in the south-east corner and the consequence is, that from the small square in that corner not $\frac{2}{34}$ are cut off, but only $\frac{2}{34}-\frac{1}{34 \times 34}$. Thence the
error in the determination of the value of the savis'esha. When the side of a square was reduced from 17 to $16 \frac{33}{34}$ the area of the square of that reduced side was not 288 , but $288+\frac{1}{34+34}$. Or putting it in a different way: taking 12 for the side of a square, dividing each of the 12 parts into 34 parts (altogether 408) and dividing the square into the corresponding small squares, we get $408 \times 408=166464$. This doubled is 332928. Then taking the savis'esha-value of $16 \frac{33}{34}$ for the diagonal and dividing the square of the diagonal into the small squares just described, we get $577 \times 577=332929$ such small squares. The difference is slight enough.

The relation of $16 \frac{33}{34}$ to 12 was finally generalized into the rule : increase a measure by its third, this third by its own fourth less the thirtyfourth part of this fourth $\left(16 \frac{33}{34}=12+\frac{12}{3}+\frac{12}{3 \times 4}-\frac{12}{3 \times 4 \times 34 .}\right)$ The example of the savis'esha given by commentators is indeed $16 \frac{33}{34}$: 12 ; the case recommended itself by being the first in which the third part of a number and the fourth part of the third part were both whole numbers.

Regarding the practical use of the savis'esha, there is in Baudháyana or rather, as far as I am able to see, in all s'ulvasútras only one operation, for which it was absolutely necessary ; this is, as we shall see later, the turning of a circle into a square, when the intention was to connect the rule for this operation with the rule for turning a square into a circle. A'pastamba employs (see further on) the savis'esha for the construction of right angles, but there were better methods for that purpose. The commentators indeed make the most extended use of the savis'esha, calculating by means of it the diagonals wherever diagonals come into question ; this proceeding, however, is not only useless, but positively wrong, as in all such cases calculation cannot vie in accuracy with geometrical construction.

At the commencement of his sútras, Baudháyana defining the measures he is going to employ, divides the añguli into eight yavas, barley grains, or into thirty-four tilas (seeds of the sesame). I have no doubt that the second division which I have not elsewhere met, owns its origin to the savis'esha. The añguli being the measure most in use, it was convenient to have a special word for its thirty-fourth part, and to be able to say "sixteen añgulis, thirty-three tilas", instead of "sixteen añgulis, and thirty-three thirty-fourths of an anguli." Therefore some plant was searched for of which thirty-four seeds might be considered as equal in
length to one añguli ; if the tilas really had that exact property, was after all a matter of little relevancy.

Having once acquired the knowledge of the Pythagorean proposition, it was easy to perform a great number of the required geometrical operations. The diagonal of a square being the side of a square of double the size, was, as we have seen, called dvikarañi ; by forming with this dvikaraní and the side of the square an oblong and drawing the diagonal of this oblong, they got the trikaraní or the side of a square the area of which was equal to three squares of the first size.

Baudh. A'past. Káty.

प्रमाएं तियगिम्द्यकरए्यायामसम्याच्द्एयारन्जुर्त्रकरएी।

Take the measure (the side of a square) for the breadth, the diagonal for the length (of an oblong); the diagonal cord is the trikarani.

By continuing to form new oblongs and to draw their diagonals, squares could be constructed, equal in area to any number of squares of the first size. Often the process could be shortened by skilful combination of different karaṇís. Kátyáyana furnishes us with some examples.

पदं तिर्यड़ानी निपदा पार्भ्यमानी तस्याच्द्ययाग्जजुर्द स्रक ली ।

Take a pada for the breadth, three padas for the length of on oblong; the diagonal is the das'akarani (the square of the diagonal comprises ten square padas, for it combines the square of the karaní of one pada and of the navakaraní which is three padas long).

Take two padas for the breadth, six padas for the length of an oblong; the diagonal is the chatvárims'at-karaní, the side of a square of forty square padas ($2^{2}+6^{2}=40$).

On the other hand, any part of a given square could be found by similar proceedings.

Baudháyana, after the rule for the trikaraní :

टतीयकरलघेते व्याप्य्याता नवमस्तु भूर्मेँागे भवतोति।

Thereby is explained the tritíyakaraní, the side of a square the area of which is the third part of the area of a given square; it is the ninth part of the area.

A'pastamba:

टतीयकर बनेन व्याख्याता विभागस्तु नवधा।

Kátyáyana:
टतीयकरणखेन ब्याप्याता प्रमाएविभागस्तु नवधा। कर्एलतटतोघं नवभागे नवभागख्नघहृती घक रणी।

Baudháyana's and A'pastamba's commentators disagree in the explanation of the sútra; the methods they teach are, however, both legitimate. Dvárakánáthayajvan directs us to divide the given square into nine small squares by dividing the side into three parts, and to form with the side and the diagonal of one of these small squares an oblong; the diagonal of this oblong is the ṭritíyakaraní.

Kapardisvámin proposes to find the trikaraní of the given square and to divide it into three parts; one of these parts is the tritiyakarañ! ; for its square is the ninth part of a square of three times the area of the given square, and therefore the third part of the given square. This explanation seems preferable, as it preserves better the connexion of the rule with the preceding rule for the trikaraní.

The fourth, fifth, \&c., parts of a square were found in the same way.
A'pastamba and Kátyáyana give some special examples illustrating the manner in which the increase or decrease of the side affects the increase and decrease of the square.

A'pastamba :

घध्यर्धपुराषा रजजुह्द्यां सपादँ। करोत्यध्घर्षटतीयपुरुपा षट् सपादान्।

A cord of the length of one and a half purusha produces two square purushas and a quarter; and a cord of the length of two purushas and a half produces six square-purushas and a quarter.

Kátyáyana:
द्विः प्रमाला चतुःकर ली निः प्रमाएा नदकरली चतुःप्रसाएा षोड्रकर ली।
A cord of double the length produces four (squares); one of three times the length produces nine, and one of four times the length produces sixteen.

A'pastamba and Kátyáyana:
अर्धप्रकाएन पादप्रमएएं विधीयते।
By a measure of half the length a square is produced equal to the fourth part of the original square.

A'pastamba:

टतीईेन नवसी कला।

Kátyáyana:

टतीयेन नवसाडडेण शः।

By the third part the ninth part is produced.
Kátyáyana:

चतुर्थन षोडशी कला।

The sixteenth part is produced by the fourth part.
Next follow the rules for squares of different size.
A'pastamba:
 वर्षो चसेग टध्रमुत्लिखेत्। हुभ्रस्या च्स्यार्जुजुरु समस्यति।

G G

Baudháyana:
 स्तयाः पार्श्यमानी भवत्वत।

For a literal translation of this difficult sútra and a discussion of the word "vridhra", see the 'Pandit' of June 1st, 1875, p. 17. The sense is as follows:

A'pastamba: The combining of two squares of equal size has been taught; the following is the method for combining two squares of different sizes. Cut off from the larger square an oblong with the side of the smaller square (i. e., an oblong one side of which is formed by the side of the larger square, the other by that of the smaller square); the diagonal of this oblong combines both squares (is the side of a square the area of which is equal to the area of both the given squares together).

Baudháyana:
If you wish to combine two squares of different size, cut off an oblong from the larger square with the side of the smaller one; the diagonal of that oblong is the side of both squares combined.

Kátyáyana:
समचतुर्खाएकुक्तः समासो नानाप्रमाएसमासे ह्रसीयसः करए्या वर्षोयसोडपच्छिन्यात्तस्या च्त्एयारज्जु रुभे समस्दतीति समासः।

The method needs no further explanation; it is in fact the same we employ for the same purpose.

We proceed to the rule for deducting one square from another.
Baudháyana, A'pastamba:
चतुरसाचतुर सिं निर्जंहीर्षन्यावर्निर्जि हीर्षेन्त्य करएया वर्षोयसो वृध्रमुल्निखेहृध्रस्य

See the 'Panddit', loc. cit.
If you wish to deduct one square from another, cut off from the larger one an oblong with the side of the smaller one; draw one of the sides of that oblong across to the other side; where it touches the other side, that piece cut off; by it the deduction is made.
abcd=the larger square; cut off from it the
 oblong $b d e f$, in which ed and $b f$ are equal to the side of the smaller square which is to be deducted. Fasten a cord ef at e, and draw it across the oblong into the position e g ; then $\mathrm{d} g$ is the side of a square the area of which is equal to the difference of the two given squares. $\left(\mathrm{dg}^{2}=\mathrm{eg}^{2}-\mathrm{ed}^{2}\right)$.

Kátyáyana words his rule as follows:

निर्हास:।

A'pastamba illustrates the rule hy an example:
 करेाति। निर्यद्मानी पुरुषले शेषस्लोन् ।

The question is about a square of four square purushas, from which a square of one square purusha is to be deducted. The diagonal (eg), which has been drawn across the oblong, is the side of a square of four purushas, and produces by itself as much as the cut-off side (g d) and the other side (ed) produce separately. The breadth of the oblong ($\theta \mathrm{d}$) is the side of one square purusha; the rest-the other side, dg - -the side of three square purushas.

In order to combine oblongs with squares, a rule was wanted for turning oblongs into squares.

Baudháyana:
दौघंचतुरसळ समचतुरसं चिकीष्षण स्तिर्यझानीं करणों क्राला शेषं द्वेधा विभज्य विपर्घस्येतर ज्नापद्ध ध्यात् ख़्यमावापेन तत्तंपूर्येचस्य निर्हार उत्तः।

In order to turn an oblong into a square, take the breadth of the oblong for the side of the square ; divide the rest of the oblong into two parts, and inverting their places join those two parts to two sides of the square. Fill the empty place with an added piece. The deduction of this has been taught.

That means: if you wish to turn
 the oblong a bed into a square, cut off from the oblong the square $c d e f$, the side of which is equal to the breadth of the oblong; divide $a b e f$, the rest of the oblong, into two parts, abgh and g hef; take abgh , and place it into the position dfik; fill up the empty place in the corner by the small square fhli; then deduct by samachaturasranirhára the small square fh 1 i from the large square glkc ; the square you get by this deduction will be equal to the oblong a bc d.
A'pastamba gives the same rule:
 खाउमागन्नुना संपूरयेत् | नस्य निह्हास उत्तः।

And Kátyáyana:
 एतस्येपद्याच्छेषमागन्तुना पूर्येचस्योलो निर्टासः।

When one side of the oblong which had to be turned into a square, was more than double the length of the other, it was not sufficient to cut off a square once, but this had to be done several times, according to the length of the oblong, and finally all squares had to be combined into one.

Kátyáyana has a rule to this purpose:

 हरेत्।I add the rules for the reverse process, the turning of a square into an oblong.

Baudháyana:
सकचतुरसं दीर्घचतुरसं चिकोष्षन्नस्याच्डएयापचिच्य भागं द्वेशा विभन्य पार्श्येयेरपदध्याघ्यायागती।

If you wish to turn a square into an oblong, divide it by the diagonal ; divide again one of the two halves into two
 parts, and join these two parts to the two sides (those two sides of the other half which form the right angle) as it fits (when joining them, join those sides which fit together).

Proceeding as directed, we turn the square abcdinto the oblong bdef . This rule is, of course, very imperfect as it enables us to turn the square into one oblong only.
Kátyáyana has the following:
समचतुरसं दीघेचतुरसं चिकीष्षन्मध्येच्चएयापचिय विभघ्चेतरत्पुरस्ता टुत्तरत स्येपदध्यात्।

A'pastamba's rule helps us somewhat further:
समचतुरसं दीर्घचतुरसं चिकीर्षन्यावच्चिकीर्षित्रावतीं पार्श्वसानीं दाला यदधिकं स्यात्र-

घथाधागमुपद्धात्

In order to turn a square into an oblong, make a side as long as you wish the oblong to be ($i . e$., cut off from the square an oblong one side of which is equal to one side of the desired oblong); then join to that the remaining portion as it fits.

Given for instance a square the side of which is equal to five, and required an oblong one side of which is equal to three. Cut off from the square an oblong the sides of which are five and three. There remains an oblong the sides of which are five and two; from this we cut off an oblong of three by two, and join it to the oblong of five by three. There remains a square of two by two, instead of which we take an oblong of 3 by $1 \frac{1}{3}$. Joining this oblong to the two oblongs joined previously we get altogether an oblong of 3 by $8 \frac{1}{3}$, the area of which is equal to the area of the square 5 by 5 .

In this way the sútra, as it appears from the commentaries, must be explained. The method taught in it was no doubt sufficient for most cases, but it cannot be called a really geometrical method.

I subjoin the description of a method for turning squares into oblongs, which is given by Baudháyana's commentator, although it is not founded on the text of the sútras. He, after having explained Baudháyana's way of proceeding, continues-
 त्ला दोर्घचतुरासमध्यस्थायां समचत्रुरस्सतिर्यद्मान्यां घन निपतति नते उत्तरं हिला दच्चि-

And there is another method. Lengthen the north side and the south side of the square towards east by as much as you want (i.e., give to them the length of the oblong you wish to construct) and stretch (through the oblong formed by the two lengthened sides and the lines joining their ends) a cord in the diagonal from the north-east to the south-west corner. This diagonal cuts the east side of the square, which (side) runs through the middle of the oblong. Putting aside that part of the cut line which lies to the north of the point of intersection, take the southern part for the breadth; this is the required oblong.

For example:

Given the square abcd and required an oblong of the same area and of the length $\mathrm{b} g$. Lengthen a c and b d into $a f$ and $b g$; draw $f g$ parallel to cd ; draw the diagonal $f b$, which cuts cd at h ; draw $\mathrm{i} k$ parallel to af and bg ; then bgik is the desired oblong.

This method is purely geometrical and perfectly satisfactory ; for $\mathrm{a} b \mathrm{f}=\mathrm{bfg}$, and $\mathrm{bdh}=\mathrm{bhi}$ and $\mathrm{cfh}=\mathrm{fhk}$; therefore achi=dghk, and consequently $\mathrm{a} \mathrm{b} \mathrm{c} \mathrm{d}=\mathrm{b}$ g ki. Q. E. d.

In this place now we have to mention the rules which are given at the beginning of the sútras, the rules, as they call it, for making a square, in reality for drawing one line at right angles upon another. Their right place is here, after the general propositions about the diagonal of squares and oblongs, upon which they are founded.

Baudháyana :

प्रमाषाय् दिगुणाँ ₹ज्नुमुमयतः पाशां क्वाला मध्ये लन्ताएं करोशत। स प्राचर्थः
 प्रतिमुच न्यन्कनेन दरिएापा यम्यार्घेकार्धिन श्राएलँ सान्विहंरेत्।

Make two ties at the ends of a cord the length of which is double
the measure (of the side of the required square) and a mark at its middle. This piece of the cord (i.e., its half) gives us the práchí (of the required square ; the práchí of a square has the same length as its side). Then make a mark at the western half of the cord less the fourth part (of the half. If we wish, for instance, to make a square the side of which is twelve padas long, we take a cord twenty-four padas long ; stretching this cord on the ground from the west towards the east, we find its middle by a measnrement beginning from the western end, and having fixed the point which lies at the distance of twelve padas from both ends, we measure three padas back, towards the west, and make at the point we arrive at a mark; this mark divides the cord into two parts of 15 and 9 padas length). The name of this mark is nyañchhana. Then another mark is to be made at the half (of the western half of the cord), in order to fix by it the four corners of the square. (This second sign is at a distance of 18 padas from the eastern end of the cord.) Having fastened the two ties at the ends of the prishṭhyá line, we take the cord at the nyañchhana mark and stretch it towards the south; the four corners of the square are then fixed by the half (of the cord).

The same method is known to A'pastamba:

कायामं वाभ्यस्यागन्नुचतुर्थमायामसान्तायारन्नुस्तिर्यद्मानी शेषः।

Or the length of the práchí of the desired square, is to be doubled; the length and the fourth part of the added piece form the diagonal cord ; the rest, i. e. three quarters of the added piece form the breadth (the shorter side of the oblong).

And the S'ulvaparis'ishṭa:
प्रमाएमभ्यस्याभ्यासचतुर्थ लच्लं करोति तन्निरच्छनसन्दएया तिर्यद्मानी शेषः।
These rules make use of one of the Pythagorean triangles which were, as we have seen above, known to the Sútrakáras, viz. of that one the sides of which are equal to three, four, and five. It recommended itself by the ease with which the three sides can be expressed in terms of each other, $3+5$ being the double of 4 , and 3 being equal to half the sum of 3 and 5 , minus one quarter of half that sum.

Of course any other oblong with measurable sides and diagonal could be employed for the same purpose, and so we find in A'pastamba a rule for chaturasrakarana abstracted from the dírghachaturasra, of which the sides are five and twelve and the diagonal thirteen.
 न्नयेरन्तो नियम्य लच्तेन दिच्चापायम्य निभिज्ति करोति। एवमुन्तरतः। विपर्यस्येतरत स समाधिः।

Take a measure equal to the length (of the side and práchí of the desired square) and increase it by its half. Make a mark at the western third less its sixth part. Fasten the ends of the cord, \&c.

Increase 12 by 6 ; result 18 ; make a mark at a third, (reckoning from 18; that would be at 12) less the sixth part of that third (i.e., a sixth part before the third) $i . e$., at 13 . Thus we get a rectangular triangle of 5, 12, 13.

The same rule in the S'ulvaparis'ishṭa:

Here, as in many other places, the paris'ishṭa is much clearer and more practical in the wording of its rules than the more ancient sútras. The mark is, according to its expression, to be made not at the western third less its sixth part, but simply at a sixth of the added piece (6 is added to 12 ; the mark is made at 13).

Another method for chaturasrakarana, taught by A'pastamba only, makes use of the above-mentioned savis'esha.

Fix poles on both ends and the middle of the prishṭhyá line, add to a cord of half the length (of the prishṭhyá) its vis'esha, i. e., its third plus the fourth part of the third minus the thirty-fourth part of that fourth part, and add moreover a piece of the length of half the prishṭhỳá, after having made a mark (to separate the two parts of the cord). Then tie the savis'esha part of the cord to the middle pole, the other part to the eastern pole, and fix the south-east corner of the square by stretching the cord (towards the south), having taken it at the mark. Untie the end of the cord from the eastern pole, \&c.

This method is of course inferior to those described above and certainly unnecessary; Baudháyana does not mention it.

I subjoin the remaining methods for chaturasrakarana, which do not presuppose the knowledge of the Pythagorean theorem.

Apastamba:

 माघचेदेवमुत्तरो श्रेए्यलेसी।

Take a cord of the length of the measure (of the side of the required square), and make ties at both its ends, a mark at its middle and at the middle points of its halves. Stretch the cord on the prishṭhyá line, and fix poles on the points marked by the two ties of the cord and by the three
marks (five poles altogether). Fasten the ties at the second and fourth poles (reckoning from the east), stretch the cord towards the south having taken it by the middle mark, and make at the point, touched by the mark, a mark on the ground. Then fastening both ties at the middle pole, stretch the cord over the mark on the ground towards the south, having taken it by the middle mark, and fix a pole (at the spot reached by the stretched, doubled up, cord). Then fastening one tie at this pole and the other tie at the pole standing at the eastern end of the práchí, fix the south-east corner of the square by stretching the cord, having taken it by the middle mark. Then untying the rope from the eastern pole and fastening it at the western pole, fix the south-west corner, \&c. ; in the same way the northeast and north-west corner are found.

In this procedure the first step is to find the middle of the southern and of the northern sides of the required square by drawing a line at right angles through the middle point of the práchí. The method employed here for drawing a line at right angles on another is the simplest of all known to the S'ulvasútras, and essentially the same we make use of when describing intersecting arcs from tivo points equally distant to the right and left from some given point. In the later portions of the sútras this method is enjoined for the measurement of the agni (instead of cords canes of a certain length had to be employed there), and the followers of the White Yajur Veda had adopted it for the same purpose (see Indische Studien, XIII., p. 233, ffi).

The second part of the procedure-to find the four corners of the square after having found the middle points of the sides-was of course easy and does not afford any special interest.

To Baudháyana the same method is known, but he restricts it in his paribháshá-sútras to the construction of oblongs; clearly without sufficient reason, since the method refers only to the construction of right angles, and the length of the sides is of no importance. A'pastamba gives no special rule at all for oblongs, and it is indeed not wanted.

I subjoin Baudháyana's rule:
 भितः समै। यावती तिर्यझ्झानी तावतीँ रज्ञुमुभयतः पाशों द्राबा मघे ल्न त्तएां करोति।

 प्ररोड सो व्याघ्यात सथा श्रोली।

He who wishes to make an oblong is to fix two poles on an area of the length which he intends to give to the oblong (i.e., at the two ends of the práchí of that area). On both sides, i. e., on the west and east sides
of both these poles two other poles are to be fixed at equal distances. Then taking a cord of the length one intends to give to the side line (breadth) of the oblong, one makes ties at both its ends and a mark at its middle. Then one fastens the two ties at those two of the three eastern poles, which stand at the outside, stretches the cord towards the south holding it by the mark, and makes on this mark (i.e., on the spot where the mark touches the ground after the cord has been stretched) a mark. Then fastening both ties at the middle pole one stretches the cord over the mark (on the ground) towards the south, and fixes a pole on the mark (i. e., on the spot touched by the mark on the cord). That is the southeast corner of the oblong; thereby are explained likewise the north-east corner and the two western corners.

In the last place I give a method of chaturás'rakarana, which is found in Baudháyana only, but there in the first place. It seems to be the most ancient of all the methods enumerated.

 मपरस्मिए से यन समेयातां तेन द्वितीयं विष्कम्भमायच्छेत्। विष्कम्मान्तयोः श्रूू निहन्यात् । पूर्वस्मिश्वाश्रो प्रतिमुच नचत्नलन मएलं परिलिखेत्। एवं दचिएत एवं पख्येदनुत्चरतसेषां येडन्याः स स सर्गास्नचतुर खूल संपघ्यते।

If you wish to make a square, take a cord of the length which you desire to give to the side of the square, make a tie at both its ends and a mark at its middle ; then having drawn the práchí line, fix a pole in its middle, and having fastened at that pole the two ties of the cord, describe with the mark a circle round it. Then fix poles at both ends of the diameter (formed by the práchí), and having fastened one tie at the eastern pole (the pole standing at the east end of the práchí), describe a circle with the other tie ($i . e$. ., with the full length of the cord). In the same manner a circle is described round the pole at the west end of the práchí, and another diameter is drawn joining the points in which these two circles intersect (this diameter is the line pointing to the north and south points). A pole is fixed at both ends of this diameter. Having fastened both ties at the eastern pole, describe a circle round it with the mark. The same is to be done in the south, the west, and the north (i.e., circles are to be described round the three other poles) ; the points of intersection of these four circles which (i, e. , the points) are situated in the four intermediate regions (northeast, north-west, \&c.,) are the four corners of the required square.

Diagram 9.

Passing over some rules of less importance, I proceed to those which refer to the "squaring of the circle." It certainly is a matter of some in-
terest to see the old ácháryas attempting this problem, which has since haunted so many unquiet minds. It is true the motives leading them to the investigation were vastly different from those of their followers in this arduous task. Theirs was not the disinterested love of research which distinguishes true science, nor the inordinate craving of undisciplined minds for the solution of riddles which reason tells us cannot be solved; theirs was simply the earnest desire to render their sacrifice in all its particulars acceptable to the gods, and to deserve the boons which the gods confer in return upon the faithful and conscientious worshipper.

It is true that they were not quite so successful in their endeavours as we might wish, and that their rules are primitive in the highest degree ; but this tends at least to establish their high antiquity.

The rules are the following:
Baudháyana:
चतुर्यं मएड्लं चिकीर्षन्नच्त्ययांध मध्यात्प्राचीमझ्यापातयेद्यदतिशिष्यते तस्य सह् ट्टती⿹ेन मएलं परिर्लखे्।

If you wish to turn a square into a circle, draw half of the cord stretched in the diagonal from the centre towards the práchí line (the line passing through the centre of the square and running exactly from the west towards the east) ; describe the circle together with the third part of that piece of the cord which will lie outside the square.

See diagram 10.
A cord is to be stretched from the centre e of the square abcd towards the corner a; then the cord, being tied to a pole at e, is drawn towards the right hand side until it coincides in its position with the line e f; a piece of the cord, $f \mathrm{~h}$, will then of course lie outside the square. This piece is to be divided into three parts, and one of these three parts, fg , together with the piece ef, forms the radius of the circle, the area of which is to be equal to the area of the square a b c d.

A'pastamba gives the same rule in different words:

मड्लं परिलिखत्। सा नित्या म凹्लम्। यावडीयते तावटागन्नु।

If you wish to turn a square into a circle, stretch a cord from the centre towards one of the corners, draw it round the side and describe the circle together with the third part of the piece standing over ; this line gives a circle exactly as large as the square; for as much as there is cut off from the square (viz. the corners of the square), quite as much is added to it (viz. the segments of the circle, lying outside the square).

I must remark that Kapardisvámin, A'pastamba's commentator, combines the two words "sá nityá" into sánityá ($=$ sá anityá), and explains: this line gives a circle, which is not exactly equal to the square. But I am
afraid we should not be justified in giving to A'pastamba the benefit of this explanation. The words ' yavad dhíyate, \&c.' seem to indicate that he was perfectly satisfied with the accuracy of his method and not superior, in this point, to so many circle-squarers of later times. The commentator who, with the mathematical knowledge of his time, knew that the rule was an imperfect one, preferred yery naturally the interpretation which was more creditable to his author.

Kátyáyana's S'ulvaparis'ishṭa:
 नस्य टतीयेन सहृ मष्लं परिलिखेत्।

Let us now see what the result of the above rule would be by making the side of the square equal to 2 . a $\mathrm{c}=2 ; \mathrm{a} \mathrm{i}=1$; a $\mathrm{e}=\sqrt{2}$ $=1 \cdot 414213 \ldots ; \frac{0 \cdot 414213}{3}=0 \cdot 138071$; radius of the circle $=1 \cdot 138071$.

Multiplying the square of $1 \cdot 138071$ by $\pi=3 \cdot 141592 .$. , we find as area of the circle : $4.069008 \ldots \ldots \ldots$, while the area of the square $=4$.

The next thing was to find a rule for turning a circle into a square. There we have at first a rule given by Baudháyana only:

पतिभागानुद्दरेख्भागस्य च षष्ठमष्टमभागे।नम्।

If you wish to turn a circle into a square, divide the diameter into eight parts, and again one of these eight parts into twenty-nine parts ; of these twenty-nine parts remove twenty-eight and moreover the sixth part (of the one left part) less the eighth part (of the sixth part).

The meaning is : $\frac{7}{8}+\frac{1}{8 \cdot 29}-\frac{1}{8 \cdot 29 \cdot 6}+\frac{1}{8 \cdot 29 \cdot 6 \cdot 8}$ of the diameter of a circle is the side of a square the area of which is equal to the area of the circle.

Considering this rule closer, we find that it is nothing but the reverse of the rule for turning a square into a circle.

It is clear, however, that the steps taken according to this latter rule could not be traced back by means of a geometrical construction; for if we have a circle given to us, nothing indicates what part of the diameter is to be taken as the "atis'ayatritaya" (the piece fg in diagram 10).

It was therefore necessary to express the rule for turning a square into a circle in numbers. This was done by making use of the "savis'esha", which we have considered above. Baudháyana assumed a i as equal to 12 añgulis ($=408$ tilas), and therefore a $\mathrm{e}=16$ añgulis, 33 tilas. Difference $=4$ añg. 33 til. $=169$ til. ; the third part of this difference $=56 \frac{1}{s}$ til. Ra-
dius of the circle $=\mathrm{e} f(=\mathrm{ai})+\mathrm{g} \mathrm{f}=408$ til. $+56 \frac{1}{3}$ til..$=464 \frac{1}{3}$ til. In other words : if half the side of a square is 408 til. long, the length of the radius of a circle, which is equal in area to the square, amounts to $46 \frac{1}{3}$ til. ; or, if the radius of a circle is $464 \frac{1}{3}$ til., half the side of the corresponding square is 412 til. In order to avoid the fraction, both numbers were turned into thirds, and the radius made $=1393$, half the side $=$ 1224. Finally, the diameter was taken instead of the radius, and the whole side of the square instead of half the side.

To generalize this rule, it was requisite to express 1224 in terms of 1393. One eighth of $1393=174 \frac{1}{8}$; this multiplied by $7=1218 \frac{7}{8}$. Difference between $1218 \frac{7}{8}$ and $1224=5 \frac{1}{8}$. Dividing 174 (Baudháyana takes 174 , instead of $174 \frac{1}{8}$, neglecting the fraction as either insignificant or, more likely, as inconvenient) by 29 we get 6 ; subtracting from 6 its sixth part we get 5 and adding to this the eighth part of the sixth part of six, we get $5 \frac{1}{8}$.

In other words: $1224=\frac{7}{8}+\frac{1}{8 \cdot 29}-\frac{1}{8 \cdot 29 \cdot 6}+\frac{1}{8 \cdot 29 \cdot 6 \cdot 8}$ of 1393 (due allowance made for the neglected $\frac{1}{8}$.)

Another simpler and less accurate rule for squaring the circle is common to the three Sútrakárás.

Baudháyana:

चपि वा पच्चद ग भागान्द्धाला दावु दरे देषानित्या चतुरसकर एी।

Or else divide (the diameter) into fifteen parts and remove two ; that (the remaining thirteen parts) is the gross side of the square.

A'pastamba :
 सा नित्या चतुरसम्।

Kátyáyana:

म区लं चतुरसं चिकीर्षन्विष्कम्सं पच्चद्श भागान्द्धला द्वावुडरेच्छेषः करली।

If we assume a circle with 15 for diameter, the area of the corresponding square would, according to this rule, be 169 , while the area of the circle is 176.714 . \qquad
These are the most interesting of the paribhásha-sútras. In the fol1owing I shall extract the description of three kinds of the agnichayana, of the vakrapakshas'yenachiti, as given by A'pastamba; of the sárarathachakrachiti and of the s'mas'ánachiti. The two latter are described by Baudháyana only. I select these three chitis, because the first of them was, as it appears, most in use, and because some particular skill was required for the construction of the agnikshetra of the two latter chitis.

The rakrapaksha s'yena itself could be constructed in different forms. Two forms are described by Baudháyana, two by A'pastamba. And as two different prastáras were necessary for each chiti, we have altogether eight different prastáras for the vakrapaksha s'yena, each of them consisting of two hundred bricks. The following extract contains A'pastamba's rules for the first kind of the vakrapaksha s'yena.
(Description and diagrams of all the other kinds will be given in the 'Pandit'. A sketch of one prastára of the second kind of the s'yenachit is to be found in Burnell's Catalogue; it is, as we are informed there, taken from an agni actually constructed and used. There is, however, an error in the reference to the sútra according to which it is said to be constructed, this sútra not being Baudháyana's, but A'pastamba's, paṭala VI.)

खेनचितं चिन्वीन सुवर्गकाम द्रति विज्ञायते।

He who wishes for heaven, may construct the altar shaped like a falcon; this is the tradition.

वक्रप चो व्यसपुच्चो भर्वति ।

His wings are bent and his tail spread out.

पश्यात्राङुद्द हति पुरसात्र्प्य ङ्नुदूहति।

On the west side the wings are to be drawn towards the east, on the east side towards the west.

एवभिव हि वघसां मघे पचर्चनार्सामो भवतीति विज्ञायते।

For such is the curvature of the wings in the middle of the birds, says the tradition.

यावानश्रिः सारलिप्रादेशः सप्रविधः संपद्यते प्रादेशं चतुर्थमात्मन स्यतुर्भागीयाखाष्टै। तासां तिसः शिर द्तरत्पन्चयोविभजेत्।

Of the whole area covered by the sevenfold agni with aratni and prádes'a take the prádes'a, the fourth part of the átman (body without head, wings, and tail) and eight quarter bricks; of those latter, six form the head of the falcon ; the remainder is to be divided between the two wings.

This sútra determines what portions of the legitimate area of the agni have to be allotted to the different parts of the falcon construction. The whole area of the saptavidha agni is seven purushas with the addition of the two aratnis on the wings and the prádes'a of the tail, altogether $7 \frac{1}{3}$ purushas. Now the fourth part of the átman (of the primitive s'yenachiti) $=$ one purusha and the prádes'a, i. e., an oblong of 120 añgulis by 12 añgulis $=$ $\frac{1}{10}$ square purusha and eight quarter bricks, (i.e., square bricks the side of which is equal to the fourth part of a purusha $=30$ añgulis, so that they cover together an area of $\frac{\frac{1}{3}}{3}$ square purusha) are given to the wings in addi-
tion to the area which they cover in the primitive agni, only they have to cede in their turn three of the eight quarter bricks, which are employed for the formation of the head. The original area of both wings together being $2 \frac{2}{5}$ purushas, their increased area amounts to $2 \frac{2}{5}+1 \frac{3}{5}-\frac{3}{16}=3 \frac{23}{6}$ square purushas, for one wing to $1 \frac{2}{3} \frac{9}{2}$ square purushas.

Nine and a half aratnis ($=238$ añgulis) and three quarters of an añguli are the length of the wing.

The breadth of the wing is the same as in the primitive s'yena, i. e., $=$ one purusha $=120$ añgulis. Dividing the area of the wing mentioned above by the breadth we get the length. Up to this, the wing has the shape of a regular oblong; the following rules show how to produce the curvature.

द्विपुरुषाथं रज्ञुमुभयतः पाशां करेाति मध्ये ल च्ताम्।

Make ties at both ends of a cord of two purushas length and a mark in its middle.

प चस्यापरयोः के टेयारन्तो नियम्य ल च़्णन प्राचीनमायचे देवं पुरस्तात्म निर्णामः।

Having fastened the two ends of the cord at the two western corners of the oblong forming the wing, take it by the mark and stretch it towards the east; the same is to be done on the eastern side (i.e., the cord is fastened at the two east corners and stretched towards the east). This is the curvature of the wings.

By stretching the cord, fastened at the west corners, a triangle is formed by the west side of the oblong and the two halves of the cord, and this triangle has to be taken away from the area of the wing. In its stead the triangle formed, when the cord is stretched from the eastern corners, is added to the wing.

एतेनेत्रएः पच्चः ब्याब्यातः।

Thereby the northern wing is explained.
The curvature is brought about in the same way.

चात्मा द्विपुरुषायासेतSघ्घर्धपु रुषयासः।

The átman is two purushas long, one and a half purushas broad.
This is not the final area of the átman, as we shall see further on ; but an oblong of the stated dimensions has to be constructed and by cutting pieces from it we get the area we want.

पुच्छेर्ध्युपुष्यासं पु रुषं प्रतीचानमाबच्चंत्।

At the place of the tail stretch a purusha towards the west, with the breadth of half a purusha.

That means: construct an oblong, measuring one purusha from the east to the west, half a purusha from the north to the south.

तस्य दचिएतनेगन्यमुत्तरत स तावन्द्यएया ब्यवलिखे द्यधार्धपुषेग्यघे स्यात्।

To the south and to the north of this oblong, construct two other oblongs like it, and dividing them by their diagonals remove their halves, so that half a purusha remains as breadth at the jointure of átman and tail.

The result is the form of the tail which we see in the diagram.

At the place of the head a square is to be made with half a purusha, and from the middle of its east side cords are to be stretched to the middle of the northern and the southern side.

The triangles cut off by these cords are to be taken away from the area of the head.

घ्ययान्प्रति श्रे एल पानपचिन्द्यात्।

Then the four corners of the átman are cut off in the direction towards the joining lines. This finishes the measurement of the s'yena. Its four corners are cut off by four cords connecting the ends of the lines in which the átman and the wings touch each other with the ends of the lines in which head and tail are joined to the átman.

A'pastamba now proceeds to the rules for the different sorts of bricks required for the construction of the agni on the agnikshetra.

करएं पुरुषस्य पच्चमायाभंष षष्ठब्यासं ययायागनतं तल्प्रथसम्।

One class of bricks has the length of the fifth of a purusha, the breadth of a sixth, bent in such a way as to fit (the place in which they are to be employed). This is the first class.

By "nata, bent" the sútrakára means to indicate that the sides of the brick do not form right angles. The shape of the brick is rhomboidical, the angles, which the sides form with each other, are the same which the wings of the s'yena form with the body. (See the diagrams of the two layers of this chiti 11 and 12 , in which the bricks are marked with numbers.)

त द्वे प्राचीसण्रिहते तदु द्वितीयम्।

Two of those bricks joined with their long side form the second class.
These are the bricks used in the second layer at the point where the curvature of the wings takes place.

प्रथमस्य षड्भागमष्ट्मभागेन वर्धचेघ्यथायेगगनतेन ततृत्तीयम्।

Increase that side of the first description which has the length of the sixth of a purusha, by the eighth part of a purusha which is bent in such a way as to fit in its proper place; this is the third class.

These are the bricks employed in the second layer, at the place where átman and wings join. They consist of two parts ; the one part equal to a
brick of the first class lies in the wing; the second part, an oblong of 24 añgulis by 15 añgulis, lies in the átman.

चतुर्भागीयाध्यर्षा तस्या स्वतुर्भागीयामाचनच्द्यया भिद्यान्तचतुर्थम् T

From a brick of which the area exceeds by a half the area of that brick the side of which is the fourth part of a purusha (this latter would be 30 añg. by 30 añg., the increased brick is 45 añg. by 30 añg.), and divide that part of it which is equal to the brick, the side of which is equal to the fourth part of a purusha, by its diagonal (removing half of it). This is the fourth class.

We get a trapezium, the sides of which are equal to 15 añg., 30 añg., 45 añg. and, in the language of the sútras, to the savis'esha of $30(=$ $\sqrt{1800)}$; they would have put this last side equal to $42 \frac{26}{68}$ angulis and very likely have expressed the fraction as 14 tilas.

चतुर्भागीयार्षं पच्चमन्।

Bricks which are equal to the half of those of which the side is the fourth of a purusha, form the fifth class. Oblongs of 30 añg. by 15 añg.

नस्यान्प्एयाभेद्: षष्ठम्।

The division of the above bricks by the diagonal produces bricks of the sixth class.

Rectangular triangles (the sides : 30 añg., 15 añg., $\sqrt{1125}$.)

 द्जाया दन्तिएापरयेः कोटोगारालिखेत् तत्सप्रम्।Draw an oblong the length of which from the east to the west is the fifth part of a purusha ($=24$ angulis) and the breadth the tenth part (12 añ.) ; to the north and the south of this oblong draw two other oblongs, and divide those by the diagonals dividing their south-western corners. This is the seventh class.

We get the rhomboidical bricks employed in the second layer on both sides of the tail. Two of their sides are $=24$ añg., the two others $=$ $\sqrt{720}$.

एवमन्यंटुत्तरमुत्तरस्याः कोटाT क्यालिखेत्तद्टम्म्।

In the same way another description of bricks is formed; only this time the oblong on the north side has to be divided by the (other) diagonal which divides the northere (north-western) corner. This is the eighth class.

Result: the trapeziums employed in the middle of the tail in the second layer.

The ninth description of bricks is got by dividing a square brick the side of which is equal to the fourth part of a purusha, by both diagonals (into four triangles).

Therewith the dimensions of all required bricks are detailed; it remains to show how the area of the s'yena is to be covered with them.

उपधाने पष्टिः पह्टिः पच्चयोः प्रथमा उद्रीचीरुपद्ध्यात्।

When placing the bricks we have to put down sisty of the first kind in each wing, turned towards the north.

पु च्चाम्ये

On both sides of the tail eight of the sixth description.

तिबोडगे तत एकां ततर्खिय्व तत एकाम्।

Three of them in the top (i.e., in each of the two western corners of the tail), then one (to the east of the three), then again three, then again one.

पुचाघये चतुर्य्या विश्य।

At the place where the tail is joined to the body, two bricks of the fourth description are placed, so as to lie partly in the body, partly in the tail. (They are composed of a triangle and an oblong; the triangle belongs to the body, the oblong to the tail).

तयाः पस्यात्पच्चम्यावनीकसण्टिते

To the west of these two, bricks of the fifth kind are placed touching each other with their faces (their short sides).

They touch each other, says one of the commentators, with their faces, like two fighting rams.

ऐेषे दश चतुर्थ्यः।

Ten bricks of the fourth kind cover the remainder of the tail.

अ्रेल्ल सेषु चास्टे प्राचीः प्रतीचीच।

In the four corners of the átman eight bricks of the fourth description are placed, turned towards the east and towards the west.

शेषे च षड्विथंशतिर्ट्रो षघ्यय्यत्तः पच्यम्यः।

In the remainder of the átman are to be placed twenty-six of the fourth class, eight of the sixth, four of the fifth.

शिरसि चतुख्या विश्ये।

In the head two bricks of the fourth kind, situated partly in the átman.
तयोग्य पुरस्सास्प्राचावेष द्विश्नः प्रस्बार:।
To the east of those, two of the fourth kind turned towards the east. These altogether form one layer of two hundred bricks.

The rules for the second layer follow.

कपरत्मिन्प्रसारे पच्च पच्च नि एँ मयेाद्वितीयाः।

In the second layer place five bricks of the second kind in both wings on the place of curvature.

घम्यययेाय टतीया चात्मनमष्टभागोपेताः।

And bricks of the third kind stretching into the átman with that part, one side of which is an eighth purusha, are to be placed on the two lines in which the wings are joined to the átman.

ऐंषे पचचत्वारिथं गत्र्रथमाः प्राचीः।
In the remaining part of each wing forty-five bricks of the first class are to be placed, turned towards the east.

Twenty-five in the southern half of the southern wing, twenty in its northern half; twenty-five in the northern half of the northern wing, twenty in its southern half.

पुच्छस्य पार्भ्ययोः पच्च सप्रम्यः।

Five bricks of the seventh class are to be placed on the northern side of the tail and five on its southern side.

द्वितोगा चतुर्थ्योग्यान्यतरतः प्रतिसथ्टितामेकेकाम्।
At the side of the second (of the above mentioned bricks) on one side (of the tail), and at the side of the fourth on the other side, one brick of the seventh class is to be placed.

शेषे चयेट्रावृ्यम्यः

In the remaining part of the tail thirteen bricks of the eighth class are to be placed.

श्रेबलेँसेषु चाष्टौ चतुर्या दर्चिएा उदीचीख।

In the four corners of the átman place eight bricks of the fourth kind, turned towards the south and the north.

In the remaining part of the átman twenty bricks of the fourth kind, thirty of the sixth and one of the fifth, are to be placed.

दिर्राष चतुर्यै। तथेगय पुरसात्चतसे नवम्यः।
Two of the fourth kind are to be placed in the head, and to the east of those four of the ninth kind.

एष दियत्तः प्रस्सारः।

This gives again a layer of two hundred bricks.
य्यात्यासं चिनुयाद्यावतः प्रस्बाराथचिकोर्षेत् ।
By turns the layers are to be constructed as many as we may wish to make.

The third layer is equal to the first, the fourth to the second, the fifth again to the first, and so on.

Next I extract from the third paṭala of Baudháyana's S'ulva-sútra the rules for the construction of the sarrarathachakrachit, the altar shaped like a wheel with spokes. Fide Diagrams 13, 14, 15.

पु पुषार्धात्मन्च [द शेनेष्टकाः समचतु रखाः कार येन्मानार्थाः।

With the fifteenth part of half a purusha square bricks are made; they are used for measuring (only for the measurement of the area of the sárarathachakrachit, not for the construction of the agni).

A square is made equal to half a square purusha and its fifteenth part taken; then bricks are made, equal to this fifteenth part.

तासां द्वे एते पच्चविण शतिस्य सारीलप्रादेशः सप्रविधः सम्पद्यते।
Two hundred and twenty-five of these bricks constitute the sevenfold agni together with aratni and prádes'a.

The sevenfold agni with aratni and prádes'a means, as mentioned above, the agni the area of which is equal to seven and a half square purushas. As fifteen of the bricks mentioned in the first sútra make half a square purusha, seven and a half purushas require two hundred and twenty-five.

ताखन्या ख्वुः षम्टिमावपे त्।

To these (two hundred and twenty-five bricks) sixty-four more are to be added.

We get thereby altogether two hundred and eighty-nine bricks.

नभिः चतुरसं करेाति।

With these bricks a square is to be formed.

वस्य षोड शेष्टका पार्श्वमानी भवति।

The side of the square comprises sixteen bricks.
चर्यस्नतथ ए द्विशिष्यम्न।
Thirty-three bricks still remain.
नाभिरन्तात्मर्वतः परिरचनुघात्।
These are to be placed on all sides round the borders (of the square; i. e., according to the commentary, on the north side and east side of the square).

Thereby all 289 bricks are arranged in a square, the side of which is formed by seventeen bricks. It is strange that we are not directed to construct the whole square at once, but are told to form at first a square out of 256 bricks and then to place the remaining 33 bricks around it. I have to propose only the following explanation. The commentator describing the whole procedure tells us to form at first in the middle of the agnikshetra a small square with four bricks, then to increase this square into a larger one, of nine bricks, by adding five bricks, to increase this square in its turn into a larger one of sixteen, and so on. While we place the additional bricks by turns on the north and east side and on the south and west side of the initial square of four bricks, the growing square loses and regains by turns its situation right in the centre of the agnikshetra; it loses it when it is increased for the first time, regains it when increased for the second time,

[^0]: * The plates accompanying this paper contain the diagrams of three different chitis; diagrams of all the remainiug chitis will be given in the 'Pandit' in the proper places.

